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Abstract

In this article we study the problem of testing for equality of variances of k inde-
pendent normal linear models, with a common regression parameter, against ordered
alternatives. As a uniformly most powerful invariant test may not exist even for the
case where k = 2, a locally best invariant test is derived. Although such tests are proven
not to exist when k > 3, we propose a test procedure which, under certain conditions

on the design matrices, will be unbiased.

Keywords and Phrases: Homoscedasticity, Locally Best Invariant Tests, Ordered Alter-

natives, Simple Order Restriction, Unbiased Tests.

1 Introduction
Consider k independent fixed effects linear models where the i model is given by:
Y, =X;8+¢, 1=1,2,... k. (1)

In the above model Y; is a n; x 1 response vector, X; is a n; X p matrix of known design

constants, and the random errors ¢; are mutually independent and normally distributed
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with E(e;) = 0 and Var(e;) = o?I. Stacking the k linear models one above the other we
have

Y =X8+e¢, (2)

where Y = [Y{:---: V), X = [X] :---: X}], and e = [¢] : --- : €]'. We shall assume that
each X, is full rank and denote the total sample size by N = Zle ;-

Models such as (1) are encountered in situations where an experimenter conducts k
independent groups of experiments or when k independent labs conduct the same experi-
ment. For instance, in an ongoing research, the Organization for Economic Co-operation
and Development (OECD), Paris, France, is studying the effects of various chemicals on the
uterine weights of rats. Nineteen different labs world-wide are participating in this study.
Although the protocol of the study is identical, since not all labs had similar amount of
experience in conducting these experiments, the OECD hypothesizes that the variability
in uterine weights depends upon the level of experience of a lab. Motivated by OECD’s
uterotrophic assay and the discussion in Khosla et al. (1979), Rai and Rao (1984), and Rao

et al. (1987), in this article we study the problem of testing for simple order restriction, i.e.,
Hy:02=---=0%, Hi:0?<05<---<0} with at least one strict inequality. (3)

For the case k = 2, in Section 2 we derive the locally best invariant (LBI) test for the
hypothesis (3). For £ > 3 it is demonstrated that LBI tests do not exist for testing (3). A
modification to the LBI test under simple order restriction is suggested for the case where
k > 3. In Section 3 conditions are derived under which the proposed test procedure is also

unbiased.

2 Invariant Tests

We begin this section with a motivating example. In this example we demonstrate that a
uniformly most powerful invariant (UMPI) test does not exist even in a very special case of
the general problem considered in this article. Consequently we shall explore locally best

invariant tests.



Example 2.1 Suppose X; ~" N(u,0?),i=1,2,...,nandY; ~% N(u,03),i=1,2,...,n.
Further, suppose that all X; are independent of all ¥;’s. Let the sample means and sam-
ple variances of the two samples be denoted by X, s? and Y, s3, respectively. Note that
— —_ X-Y)?2 .
Wy = "—a%ls% ~ X2, Wy = %gls% ~x2_, and W3 = %%)— ~ x3. The parameter of in-

terest is p = 03 /02. Then the maximal invariant statistics, under the linear transformation

group * — a + bx, are

WX T 83
70,72 = (BAETT) %
(21, 22) ( (n—1)s? " 52
_ n(X-Y)2 o2 o2+4+02 (n—1)s3 o? a_%
o?+02 (n—1)s? o2 ' o3 (n—1)s?o?
W3 Wg)
= (a+p 22, p22).
(( wdralas

Since W1, Wy and W3 are independently distributed, the joint density of Wi, Wo, W3 is given
by

n—1_ w n—1_ w _1 w
flwi,wa,w3) = Kw, ? 16_71w22 le_Tzw?,Qe_TS
Let
W3 Wy
Zi=(1+p)=2, Zy = p2, and Z = W,.
1= ( +P)W1 2 le and Z3 1
Equivalently, we have
YAV YAV
W3: 13,W2: 23,andW1:Z3.
(1+p)

The Jacobian of transformation is given by Z2/(p(1 + p)). Hence the joint distribution of
(Z1, Zo, Z3) is given by

n—1 1
nol_1 _23 (2923 Tl 2z 2123 -3 _ ziz3 232)
flz1,22,23) = Kz3° €’ (—) e 2 [—— e 20+p) — 3
’ p (1+p) p(1+ p)
= x 1Z;%z;%lilznfge_%ze'(l#??*'1z+1p).
pz(1+p)?

Hence integrating z3 we obtain the joint distribution of (Z;, Z3) as follows:

_1 n=1_ 4
2 2
K, z; %2y

p*T (1+p)2 (L+20/(1+p) + 22/p)n= />

f(zl,zQ) =

Note that K and K; are some constants of integration.



Consider the problem of testing test Hy : p = 1 against the simple hypothesis H; :
p = p1, where p; > 1. The likelihood ratio under the null and the alternative hypotheses

reduces to

M

fH1_\/§

Thus according to the Neyman Pearson Lemma the most powerful (invariant) test will reject

_1
@ _ 1 (z1/(1+p1)+22/p1+1 " 2pn74(1+p1)
Atz +1 !

the null hypothesis if

N[

<Z1/(1+Pl)+22/p1+1>n% pn__1 <c, (4)

2 (1
%+z2+1 1 (+p1)

where c is chosen so that the size of the test is . The above test (4) is equivalent to

(5)

_1
21/(1+p1) +22/p1 +1Y) " 2 <d
2714-22-{—1 -7

where d is chosen so that the size of the test is a. Note that the above critical region
(5) cannot be made independent of p;. Consequently, the most powerful (invariant) test

will depend upon the value of the parameter in the alternative space. Hence there is no

uniformly most powerful invariant test for testing Hy : p = 1 against Hy : p > 1.

Since the UMPI test fails to exist even for the simple case discussed in Example 2.1,
we do not expect it to exist for the general problem considered in this article. Therefore
in this section we shall discuss the existence of locally best invariant tests under the linear

transformation group G defined by
g(Y)=c(Y +Xb), ¢ >0, and be RP. (6)

As in Mathew and Sinha (1988), we shall simplify the probability ratio of the maximal
invariant under the alternative and null hypotheses using Wijsman’s representation theorem
(Wijsman, 1967). According to Wijsman’s representation theorem the probability ratio may

be written as
o Jatslg(V) 75'dG

S folg (V) JgrdG'

(7)



In the above expression, Jg is the Jacobian, dG = ¢ 'dbdc is the left invariant measure on
G, fo(y) is the probability density function (pdf) of Y under Hy, and f5(y) is the pdf of Y’
under the alternative hypothesis.

We now describe some notations which will be used throughout this article.

Let ||u|| indicate the euclidean norm of vector u, defined by (u'u) /2 Denote

1

n;—p

-1
P = 1Y; - X; (X'X) " XY, (8)

the mean squared residual based on an estimator of 8 which pools information from all of
the groups, as if under homogeneity.

Let 6; = 02 — 02 4,4 = 2,...,k, and let § = (d2,03,+++,0;)". Then the alternative
hypothesis H; in (3) is equivalent to § > 0. We shall assume, without loss of generality,
that o2 = 1. Observe that 022 =14d9+---49; for i = 2,...,k. Hence under the alternative
hypothesis Hi, the covariance matrix of Y is a function of §. Let this covariance matrix
be denoted by Vs, an N x N diagonal matrix. Under H the covariance matrix of Y is an
N x N identity matrix.

We now state the main result of this section. All proofs may be found in the Appendix.

Theorem 2.1 For k > 3, locally best invariant tests do not exist for testing the hypotheses
in (8). If k = 2, then the locally best invariant test of size o rejects the null hypothesis when

p3/p? > ca, where co is chosen such that P (p3/p? > calHo) = a.

The above theorem uses the following lemma which provides a Taylor’s series expansion

of R defined in (7).

Lemma 2.2 Let dy = [X'X|1/2)/ (| V- |X’V5_1X|)(1/2) and = — (N —1)/2. Let 0
denote an appropriately sized matriz of all zeros. Define 'y = [0:---:0:L,, :0:---: 0]'
and

Ai=1[0:-:0:T;:Tyyq:---:Ty].
Then

E o aiAlY — AX (X'X) T XY
|V — X (X'X) ' X'y |2

R = 1+(Vd5|5:0)'6—6< )+0(5'5).



The proof of Lemma 2.2 depends on the alternative hypothesis Hi only through the
structure of V5 and hence A;. Thus the result is applicable to other order restrictions with

appropriate modifications to the definition of A;.

3 Unbiased Tests

Since no LBI test exists for £ > 3, in this section we shall explore invariant tests which may
at least be unbiased for testing against the simple order alternative given in (3). We begin
with a simulation study.

We shall compare by computer simulation the powers of four different tests. The test
procedures considered in this simulation study reject the null hypothesis for large values
of the respective test statistic. The test statistics considered are (i) s2/s?, (ii) Hartley’s
statistic: (max; s?) / (min; s?), (iil) p}/p?, and (iv) (max; p?) / (min; p?). Test statistic (ii)
is the well-known Hartley’s Fi,,, statistic for testing homogeneity of means. Test statistic
(iii) is motivated by the LBI test statistic when k = 2. Test statistics (i) and (iv) are the
regular and pooled analogs of (iii) and (ii), respectively.

We shall use the following three models for comparison purposes:
vij =1+ €5, 1= 1,2,...0k, 7=1,2,...,n,. (CM)

yijzl-l—xij-l—e,-j, 1=1,2,...,k, 7=1,2,...,m,. (SLR)
yij:1+xij+x§j+eij, i=1,2,...,k j=1,2,...,n; (QUAD)

In each of the above models ¢;; ~™dePendent [\ (0, 52). Clearly the CM and SLR models are
special cases of the QUAD model. For purposes of the simulation, the number of groups &
and the sample sizes within each group n; were varied. For the SLR and QUAD models,
the z;; were set to (i — 15).

In each case, the critical values for a nominal o = 0.05 level test were based on
10,000 bootstrapped samples under the null hypothesis (without loss of generality, set to
o =2 %)2 )- The power calculations were based on 10,000 bootstrapped samples in the
alternative space where the variances were taken to be o = i, i = 1,2,...,k. Although

it is well-known that statistic (i) follows an F distribution, for consistency all the power



calculations were based on the bootstrapped critical values. It should be noted that the
bootstrapped critical values for statistic (i) were close to the true F critical values. The

resulting powers are summarized in Table 1.

Table 1: Power Comparisons for Ten Test Statistics

MODEL k n; N | (i) (i) (i) (iv)
CM 6 2 12 |.12 .06 .20 .07
CM 6 4 24 (.37 .13 .43 .16
CM 6 6 36 |.57 24 .62 .29
CM 6 2% 42 |.12 .10 25 .14
CM 6 3 63 |.20 .15 .30 .20
CM 6 4 84 |.45 .33 .57 .37
CcM 7 4 112 | .51 40 .67 .45
CM 9 4 180|.61 .48 .78 .59
CM 12 4i 312 |.75 .63 .88 .74
SLR 6 4 24 |.25 .09 .41 .16
SLR 6 6 36 |.48 .18 .61 .30
SLR 6 3 63 .10 .09 .30 .09
SLR 6 4 84 |.29 21 .54 .22
SLR 7 4 112.30 24 .63 .26
SLR 9 4 180|.38 .30 .76 .36
SLR 12 4i 312 | .43 34 87 .51
Q 6 4 24 |.13 .05 .38 .16
Q 6 6 36 |.36 .12 .58 .29
Q 6 4 84 |.12 .10 .52 .04
Q 7 4 112|.13 .11 .63 .05
Q 9 4 180|.15 .12 .74 .07
Q 12 4i 312 |.17 .14 87 .11

That Hartley’s test does not perform well for the ordered alternative is not too sur-
prising. Hartley’s test was designed to detect hetergeneity in any form. When the al-
ternative in (3) is true, we expect s% and s? to be within statistical error of max; s? and
min; s?, respectively. However, the critical values for Hartley’s statistic are generally larger
as (max; s?) / (min; s7) > s2/s? .

Clearly a simulation cannot be exhaustive in its cases. However, the variety of cases
used suggests that pooling the information from other groups can dramatically improve the

power of a test. Among these four statistics, (iii) consistently outperforms the others. As

(iii) also provides an LBI test when k = 2 , we now explore the unbiasedness property of a



test based on (iii). In particular, we derive conditions under which this test can at least be
unbiased for the simple order alternative, i.e. P (pi/p? > co|H1) > P (p2/p? > co|Ho).

Cohen et al. (1994) discuss the problem of testing for homogeneity of natural parameters
against certain types of linear order restrictions when the sufficient statistics are independent
and belong to single parameter exponential family with PF;, property. Unfortunately, the
results obtained in Cohen et al. (1994) are not applicable in the present context because
the components of (p?,p2,..., p%) are not independently distributed nor does the marginal
distribution of p? belong to a single parameter exponential family with PF, property. Cohen
and Sackrowitz (1993) derive some general stochastic inequalities which can be used for
proving unbiasedness of certain types of test procedures. One of the assumptions made in
Cohen and Sackrowitz (1993) requires the joint distribution of (p?,p3,...,p?) to satisfy the
decreasing in transposition (DT) property, which cannot be verified in the present context.
For these reasons, we take a more direct approach to the problem.

Before we present the main result of this section, we define some additional notation. For
any symmetric matrix A, in this section we shall denote the set of eigenvalues by {); (A)}.
Here the index ¢ does not correspond to the relative magnitude of the eigenvalue; rather it

h

indicates that \;(A) is the eigenvalue associated with the it eigenvector of A, in whatever

order those may be. Further, we shall denote P;; = X; (X' X)* X’ and

L, —Pul + X5, [5t >k, PisPsi] i=1

Dsi = i k k -
I, — Pi] + (thz 5t) I, —2Pi] + >0 [5t D=t PisPsi] 1=2,...,k

Theorem 3.1 If € is multivariate normally distributed with mean 0 and covariance matriz
¥ = diag [0%1,, : -+ : 011, ] then a sufficient condition for

P
p?

P}

Zstochastically 9

: (10)
5 b1

0

18 that
oA; (Dsk)
. g \TToL) 11
06, - 0k 06, (11)

foralli=1,...,n;7=1,...,n1;and t =2,...,k.

Aj (Do1)

Corollary 3.2 If k =2, then (10) holds if (i) the eigenvalues of P11 are only 0’s or 1’s or

(ii) all nonzero eigenvalues of P11 that are not equal to one are identical.



We now present some experimental designs which satisfy the condition of Theorem 3.1.
Example 3.1 (Common Mean Model)
Here the model is
vij =pteg, 1=1,2,...0k 7=12,...,n, (12)

where ¢;; ~derendent (0, 52). Let 1,, denote the n; x 1 vector of all ones and J,,, denote
the n; x n; matrix of all ones. Observe that the common mean model may be written in

the form of (2) where X = 1y and 8 = p. Note that in this case, (X'X)™" = 1/N and

k k
Dsi = I+ |—(1/N)+ > <5t2ns/jv2)] I
t=2 s=t
Additionally
k
Ds, = (1 +> 5t> I,
t=2

T

k k k k—1
_ (1 + 22@) (1/N)+ > 6 (nk/NQ) +3 4 (Z ns/N2>
t=2 t=2 t=2 s=t

Using the fact that the eigenvalues of al,,; +-bJ,,; are a with multiplicity n;—1 and a+n;b with

multiplicity 1, the eigenvalues are determined and presented in Table 2 with the appropriate
derivatives.

Observe that for j = 1,...,n1 — 1, condition (11) from Theorem 3.1 is trivially satisfied
as O\j (D) /00y =0 forallt =2,...,k.

Consider the case for j = ni. Fort = 2,...,k and 4 = 1,...,n; — 1, condition (11)

reduces to verifying

[(N —ny)/N](1 (Z nins/N >
or equivalently, N (N —ni) > ng Ef:t ng, which is true. For ¢t = 2,...,k and 1 = ny
condition (11) simplifies to

k
> [(N —ng) /N] (Z nlns/NQ)

s=t

[(N —n1) /N] l( — i)’ /N? + (anns/N)

or equivalently,

k
(N —n1) l(N — ng)? (nk Zns) (N —ng) (nl Zm) .
s=t




Table 2: Eigenvalues and Derivatives for Common Mean Model

Aj (Do) OA;j (Dyg1) /96 Aj (Do)
j=1,...,n1—1 1 0 1
Jj=m 1—(n1/N) Y ning/N? (N —n1) /N
+ kg 0 (S8 mans /N?)
Ai (Do) O\ (Dgy,) /04 Ai (Do)
i=1,...,mp —1 14+ 3F 56 1 1
i = ny (1+ 5k ) (N —ng)? /N2 | (N—ng) /N

— (1425, 8) (/)
+ Xt 61 (n/N7)
+3F 06 (Zf;tl nkns/NZ)

+ (Ef;tl nkns/Nz)

Therefore, the test with rejection region p2/p? > ¢, is unbiased for the common mean

model.

In this case the linear model (1) is replicated k times. Thus X; = Xy, and n; = nq,

Since n1 YF_, ny < (N —ny) (N — n1), therefore

k
(N —ny) (m Zn5> < (N —n)* (N —n1)
s=t

k—1
< (N —mn1) l(N—nk)2+ <nk2ns>] .
s=t

Hence the sufficient condition is satisfied.

Example 3.2 (Replicated Linear Model)

10

for :+ = 1,2,...,k. Replicated models have been well studied in the literature by many
researchers. These models arise very naturally in fertilizer trials where the agronomist may
want to study the repeatability of dose responses from year to year. Some useful references
in this context are Rao et al. (1987), Rao et al. (1998), and Srivastava and Toutenburg
(1994).




Notice that for the replicated model, X'X = 3% | X/ X, = kX/X; and so (X'X)™"
= (1/k) (X4 X1) "', As a result

k
Dsi = Ly + |- (1/k)+> 6 (k—t+1) /kZ] X, (X)X,) 7t X
t=2
Additionally
k
Dy, = <1 + Z 5t> I,
t=2

+

k k
- (1 + 22&) (1/k)+> 6 (k—t+1) /kQ] X, (X)X;) ' X
t=2 t=2

Note that as det [AL,, — (bI,, + cA)] = det [(A — b) I, — cA], the eigenvalues of bI,,,+cA
are b+ cX (A). Using this fact along with the fact that the eigenvalues of X; (X} X;) ™ X/,
are 1 with multiplicity p = Rank (X;) and 0 with multiplicity n; — p, the eigenvalues are

determined and presented in Table 3 with the appropriate derivatives.

Table 3: Eigenvalues and Derivatives for Replicated Linear Model

Aj (Ds1) 9A; (Dg1) /06 Aj (Do1)
j=1,...,p 14 [ (1/k) (k—t+1)/k? 1— (1/k)
+ Sk 8 (b~ +1) /K]
j=p+1,...,m 1 0 1
Ai (D) OX; (D) /06 Ai (Do)
i=1,...,p (1+ x5, 0) (1/k2) (K2 —k —t+1) | 1— (1/k)
+[- (14258, 0) (1/k)
+ 5080 (k= t+1) /K]
i=p+1,...,n (1+zf:25t) 1 1

Observe that for j = p+1,...,nq, condition (11) from Theorem 3.1 is trivially satisfied
as O\j (Dg1) /06y =0 forallt =2,... k.

Consider the case for j=1,...,p. Fort =2,...,kand i =p+1,...,7n1 condition (11)
simplifies to verifying that

1= (/B (1) > () [(k—t+1) /K]

11



or equivalently that k2 —k >k —t+ 1. Since k2 =2k +t—1=(k—1)>+t—2and t > 2,

the condition is met. Lastly, for t =2,...,k and i = 1,...,p condition (11) reduces to

= /m)] [(1/k2) (B2 =k —t+1)] > 1= (/R)] [(k —t+1) /K]

or equivalently k2 —k —t+1 > k —t + 1. Since k > 2, this condition holds.

Therefore, the test with rejection region pi /p? > cq is unbiased for the replicated model.

a

Appendix

We shall first provide the proof of Lemma, 2.2 which is used in the proof of Theorem 2.1.

Proof of Lemma 2.2:

Without loss of generality we may assume that 8 = 0. Hence for : =0 or §,
_ _ 1 _
filg(¥)) = 2) Y Vi D exp { =Sy + X0V, He(v + X1

In the above, V| indicates the covariance matrix of Y which is the N x N identity matrix.
Since the Jacobian of the transformation from Y to g (V) is ¢V and dG = ¢~ 'dbde,

then
/Gfi (g(Y)) J&ldG = (gw)—(N/2) |Vi|*(1/2)
o 1
. / / €Xp {_502 (Y 4+ Xb)lv;l (Y + Xb)} CNildde.
0 Rp

To simplify notation let

Qo =Y'Y - Y'X (X'X) ' Xy,

and

-1
Qs =Y'V;'Y —Y'ViIX (X'ViX) X'VY (13)
Note that
(Y +Xb)' VI (Y +Xb) = Y'V'Y +20'X'V]'Y + 09XV IXb
-1 /
- [b + (X' 1) X’VZ-IY] X'V;x

. [b+ (xvi'x)" X'VZ-_IY] + Q.

12



Thus

/fz ) JgtdG = (2m)" R vy 072
o0 C2 -1 !
/ V exp{—— [b+(X’V;1X) X'V;ly] X'Vi'X
0 RP 2

-1 2
: [b + (X'V; 1) X’VilY] } db] N Texp {—%Qi} de
Note that the inner integral is proportional to a p-variate normal density function with

-1 -1
mean — (X’ VvV, 1X) X'V, 1y and covariance matrix ¢=2 (X' VvV, 1X) . It follows that

o0 2
0
Under the change of variables u = ¢?Q; and du = 2¢Q;dc, then

L) Jgtae = (172 @n) (N0 v 0y X gl

. / =372 {_E} du.
0 2

(1/2) (2m) " IV=2)/2 |y |=(1/2) X v 51X~ (/2 QLN =D/ oo [(N=8) /2] o= (/D) gy
(1/2) (2m) "IN =P/ x|~ (1/2) Q- (N =172 o0 [(N=3) /2] (u/2) dy

- (&)

As §; (O fori=2,...,k, then H; — Hy. Performing Taylor’s series expansion of R about

Thus

6 = 0 we obtain

_ Qo @ 0 @ (6-1) ! ,
o= (QO) * (Qo) Visls=o + <Q8> 0Qy 'VQsls=o| 0+ O (8'0)
/ 0 , )
= 1+ (Vs 3+ (5 ) (VQslsmo) 6 +0(59). (14)
0

Note that

8Q5_811 3/1 1w\ L ~rxr—1
ol ((%YVJ Y) (35YV6 X)(XVJ X) X'V;ly

] _
~Y'V;IX [85 (x'viix) ]X'V51Y
0

~Y'VIX (XVX) 1 (85

X'Vy 1Y)

13



Since

therefore

o(A'B'A)

o = (A’B_lA)_l A'B™! (%’) BlA (A’B—lA)_1 :
where A does not depend on z. Hence
%c,g: = —Y'v;! (%—‘S) VY +Y'V; ! (%‘(;‘5) V;1X (X’VgIX)_l X'V;'y

~Y'V; X (X'Vglx)_l X'V;! (%) V;1X (X'Vglx)*1 X'V;ly
+Y'VIX (X'VgIX)_l X'v;! (%) V;lY.

Since
Vs =diag[I,, : (1 +62) L, :---: (1 + 24+ 6) I, ]

notice that
3;;:,5 o = diag [0 HEERIEN | I P :In(i+1) Deee Ink] = AAL.

It follows that

%?j g ~Y'VIAAVSY + YV ANV X (X'Vglx)_1 X'vyly

—1 -1
—Y'VEIX (XVEX)  XVETAAVEIX (XVEIX) XY
-1
+Y'VEIX (X'VgX) X'V AN VY

= —JAYY - AIX (X'X) 7 XY

since Vo = Iy. Substituting the above into (14), then the lemma is proved.

Proof of Theorem 2.1:

Recall that A; =[0:-+-:0: T : Ty :---: Ty]'. Tt follows that AjY = -5, T';¥; and

k
_ —1
ALY — AIX (X'X) 'X'y|2 = §:||Yj—xj(x'x) X'y |2
j=i

14



Let SS; = [|¥; — X; (X'X) ™' X'Y||%. Thus the right hand side above is $S; + -+ + SS.
Also note that
£ 1
Qo= [IVi = X; (X'X) " X'Y|> = 51 + S82 + -+ + S5}
=1

Hence, from Lemma 2.2 we have,

B , N—l)’c ( S8+ -+ S5 ) ,
R = 1+(Vd5|5:0)<5+(—2 ;5, S5 155, 11 55, + 0 (8'6).

Suppose k = 2 then § = d9, a scalar. It follows that

R=1+5<6" )+6<N_1) 552 +0 (%)

35 |5_s > ) 55, + 55
ds ) (N—l) 1 ,
+5<8550 {73 (SSl/SSQ)+1+O(6)

Note that (9ds/09) |s=o is free of random variables, (N —1)/2 > 0, and § > 0. Thus
R is a monotonically increasing function of SS3/5S;. Therefore, the LBI test rejects Hy
when SS5/SS; is large. Observe that (n; — p) p? = SS; and (n; —p) > 0. Thus p2/p? =
[(n1 —p)/(n2 —p)] (SS2/S5851) is the LBI test when k& = 2.

Suppose k > 2. Let §3 = --- = d = 0. This is equivalent to choosing a point in the
alternative space where 07 < 03 = 03 =--- = 02. Then
N-1 S8+ -+ 85
R o= 1Vl (_)5( ) o
+ (Vdlso) 0+ =5~ ) 2\ 55,1 55,7 + 85, ) T2 100

N -1 1
( 2 >[SSl/(SSQ++SSk)]+1+O(5§)

Thus the best invariant test at such a point in the alternative space would reject the null

= 1+ (Vds|s_y) 0+ 62

when (5SS +---+ 5S;) /SS; is large. On the other hand, suppose d; = -+ = §_1 = 0,
which is equivalent to choosing a point in the alternative space where 07 = --- = O']%_Z =

0,%_1 < O']%. Then

N -1 S5},
= 14(V ! !
R +( d5|‘5—0)5+( 2 )5k(551+552+---+55k)+O(M)
N -1

1
2 ) [(SSI+"'+SSk_1)/SSk]+1 +O(5]%)

= 1+ (Vds|s_y) 6 + & (

Thus the best invariant test at such a point in the alternative space would reject the null
when SSi/(SS1 + --- 4+ SSk_1) is large. Since the best invariant test depends on the point

in the alternative space, no LBI test exists. Hence the theorem is proved.
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We need the following lemmas in the proof of Theorem 3.1.

Lemma A.3 If e is multivariate normally distributed with mean 0 and covariance matriz

(m—p)(Z?’“M( )sz>
ng —p/) \ XL Aj (Da1) Vi

where V;j ~ x? such that V,; is independent of Vi, j # j'.

Y = diag[0?1,, : -+ : 021, ], then

IS

pi/pt

Proof of Lemma A.3: Let Z; = T} (Iy — X (X'X) ™' X') Y, then
(ni —p)p} = [IY; = X (X'X) " XY = Z/2;.

Recall that if u ~ N(0,X), then u'u 2 S i () V; where V; ~independent 32 Note that
E(Z;) =0, and
Var(Z;) = Tj[Iy - X (X'X) 7' X' Var (V) [Iy - X (X'X) 7' X'| T,
= o2, —o?X; (X'X) "X, - o?X; (X'X) ' X!
+ i o2X; (X'X) 7' XX, (X/X) XL
s=1
Since 0? = 1+ 69 + - -- + d;, therefore

Var(Z;) = (148 +-+6) [T, - 2X; (X'X) ' X]]

k
+3 A+ G4+ 6) X (X'X) T XX (X'X) T X

L, — 2X; (X'X) 7' X! + X, ( ZX’ X’]

+ ( Z 5t> X; (X'X)~ Xg}

S
+> <Z 5t> (X'X) XX, (X'X) X
§=2

t=2
= [l - X (X'X) X + (Z 5t> [, — 2% (X'X) ' X]]
k k
+33 X (X'X) T XX (X'X) X
t=2 s=t
= Dy;.
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Therefore Z!Z; 2 Z?;l Aj (Dsi) Vij. Since p? = Z!Z;/ (n; — p), the lemma is proved.

a
Lemma A.4 For any symmetric matriz A that is a function of scalar §,
ONj(A)  ,0A
o5 995
where x; is the orthonormal eigenvector associated with the jth etgenvalue of A.
Proof of Lemma A.4:
Observe that since Az; = A; (A) z;, then
AAz; 0N (A)z;
a0 - 99
ox; ox; o (A
o AT B = N (A) G+ P
Pre-multiplying each side by x/; yields
a:;A% + x;%x] = x;-/\j (A) aaig + 117; (‘Mg%A)mj
& @i (M) G+ 2458 = ah (A) GE + Bhala;
A _ 9\(A)
& TiS5T; = Thy o TiT
Since z; is orthonormal, a:z-mj = 1. Thus the lemma is proved.
a
Proof of Theorem 3.1:
From Lemma A.3 we know that (10) is equivalent to
it Xi Do) Vii S 2y Ai (Dok) Vi (15)
Sk Aj (Dgr) Vi~ 50 Ay (Dor) Vi
A sufficient condition for (15) (and for (10)) to hold is that
2iti X Dar) Vii o Xity Ai (Dok) Vi (16)

YL A (Ds1) Vi =% 30 A (Do) Vi

which is equivalent to

likj Ai (Dek) Vki] [i Aj (Do1) Vlj] - [f: Ai (Dok) sz'] li Aj (Dg1) Vlj] >a.s. 0

i=1 j=1 i=1

17



& 3k X0 [N (Dek) Aj (Do) — Ai (Dok) Aj (D61)] Vi Vij >4 0.

As Vy; and Vy; are non-negative random variables, the above condition is equivalent to
Ai (Dsk) Aj (Do1) — i (Do) Aj (Ds1) > 0, (17)

foralle=1,...,nyand 7 =1,...,n1.
Observe that

k
Ds =[I,, —Pu]+ )
t=2

k
5tZP13P31] 3 and

s=t

k k
Doy, = [Ln, — Pri] + (Z 5t) ne — 2Prk] + ) l&ZPks sk]
t=2 s=t

=2
k k-1

= Mo, —Prel +D_6 l(Ink —Pu)’+ Y PksPsk]
= s=t

Thus Dy and Dy; may each be written in the form A + §;B where A and B are symmetric
matrices and B is non-negative definite. Then from Lemma A.4, 0\; (Dg;) /0d; is of the
form z;Bz; > 0. Hence A; (Dgx) and \; (Dg1) are each increasing in &; for t = 2,..., k.

Also, note that A; (Dg1) > 0 and A; (Do) > 0 as the eigenvalues of non-negative definite
matrices are non-negative. Thus A; (Dsg) Aj (Do1) and A; (Dox) A;j (Ds1) are each increasing
in ;. Since the left-hand-side of (17) is linear in §; and equals 0 when § = 0, then an
equivalent condition for (17) is

O0X; (Dsx) Aj (Do1) Y (Dok) Aj (Ds1)
00 - 00; '

Since this expression is equivalent to (11), the theorem is proved.

Proof of Corollary 3.2:
Since X)Xy = X'X — XXy, it follows that Ds; = [I,, — P11] + 62 (P11 — P%;). From

Lemma A.4 (0/0d2) Aj (Ds1) = uj; (P11 — P%,) u; where u; is the orthonormal eigenvector

th

associated with the j** eigenvalue of Ds;. Since Dy; is a polynomial in Py, therefore u;

is also an eigenvector of Py; and P?;, with eigenvalues \; (P1;) and ), (Py1)? respectively.

Thus
%(;[:M) - ’U, [’\ (Pll) Aj (P11)2] U; = [/\j (P11) — /\j (PH)Q] .

18



Additionally note that Dgo = [I,, — Paa] + &2 [In, — P22]2. Let v; be the orthonormal

eigenvector associated with the ith eigenvalue of Dgy, then by a similar argument as above
we have

OAi (Dg2) 2

Z@T = ’Ué ([In2 — PQQ] ) (o

= ojAi ([T, — Poo]’) v
= A ([In2 - P22]2)
= [1- XN (Paxw).
Hence the sufficient condition (11) reduces to verifying
Aj (Do) [1 = X (P22)]” > Ai (Do2) [/\j (P11) — X (P11)2]
foralli =1,...,n0 and j = 1,...,n1. Note that A\j (Do1) =1 — X; (P11), and \; (Dg2) =
1 — X; (Pg2). Therefore, the above inequality is equivalent to
[1= 2 Pi)][1 = X (P2)]* > [1 = A (Pa2)] Aj (P11) [T = Ay (P11)] (18)
foralli=1,...,n0and j=1,...,n1.
Since A (AB) = A (BA), therefore
APn) = A[(X'X) XX

= A(X'X) (XX - X5Xo)]

ML, - (X'X) ™! X5X ]

= 1-A[(X'X) XX,

= 1-A(Pg).
Hence (18) is equivalent to, for alli =1,...,ne and j =1,...,m
(1= (P1)] M (P1)? > X (P11) Ay (Pua) [T = Xy (Pua)]- (19)

If X\j (P11) = 1or \j (P11) = 0, then (19) is trivially satisfied. If \; (P11) # 1 and \j (P11) #
0, then (19) reduces to

)\,‘ (Pll) 2)\] (Pll) Vi = 1,...,%2 and j= 1,...,n1.

Hence all nonzero eigenvalues of P11, which are not equal to 1, must be identical.
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